8.3 Further Complex Numbers

Question Paper

Course	CIEALevelMaths
Section	8. Complex Numbers
Торіс	8.3 Further Complex Numbers
Difficulty	Hard

Time allowed:	40
Score:	/30
Percentage:	/100

www.mikedemy.com

Question 1

Express the following complex numbers in exponential form:

- (i) $3(2\cos 2 2i\sin(-2))$
- (ii) $-2 + 2\sqrt{3}$ i

[4 marks]

Question 2

 $z_1 = 6e^{4i}$

- $z_2 = 8e^{-i}$
- (i) Work out $z_1 z_2$ and $\frac{z_1}{z_2}$, giving your answers in exponential form.
- (ii) Express your answers to part (i) as complex numbers in modulus-argument form. In each case the modulus and argument should be given as exact values, with the argument θ being given in the interval $-\pi < \theta \leq \pi$.

[4 marks]

Question 3

Given the point z on an Argand diagram, where $z \neq 0$ is a complex number, describe the geometrical transformations that will map z to each of the following points:

- (i) −2*z*
- (ii) |*z*|
- (iii) $\frac{z}{w}$ (where w is a non-zero complex number)

[6 marks]

www.mikedemy.com

Question 4a

Let $z = r(\cos \theta + i \sin \theta)$ be a square root of the complex number $-5\sqrt{3} - 5i$.

(a) Show that

$$r^{2}(\cos 2\theta + i\sin 2\theta) = 10\left(\cos\left(-\frac{5\pi}{6}\right) + i\sin\left(-\frac{5\pi}{6}\right)\right)$$

[3 marks]

Question 4b

(b) Use the geometry of complex numbers to explain why

 $\cos \alpha + i \sin \alpha = \cos(\alpha + 2\pi) + i \sin(\alpha + 2\pi)$

for any value of α , where α is a real number.

[2 marks]

Question 4c

(c) Use your answers to parts (a) and (b) to find the two square roots of the complex number $-5\sqrt{3} - 5i$. Give your answers both in modulus-argument form and in the form a + bi where a and b are real numbers.

[4 marks]

Question 5

 $z = 3 + 3\sqrt{3}$ i, $\operatorname{Re}(z^2 w) = 0$, $|z^2 w| = 2|z|$

Use geometrical reasoning to find the two possibilities for *w*, giving your answers in exponential form.

[4 marks]

Question 6

By considering the exponential and modulus-argument forms of a complex number, prove *Euler's identity*

$$e^{i\pi} + 1 = 0$$

[3 marks]

www.mikedemy.com